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LE’ITER TO THE EDITOR 

Asymptotic spatial patterns on the complex time-dependent 
Ginzburg-Landau equation 

Kanemitsu Katou 
Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

Received 23 July 1986 

Abstract. Asymptotic spatial patterns (wavefront solutions) on time-dependent Ginzburg- 
Landau (TDGL) equations with complex coefficients are discussed. The condition for the 
existence of a spatial limit cycle solution is found to be given in terms of the propagation 
velocity of the wavefront solution and the stability criterion for the spatial limit cycle is 
obtained. The amplitude oscillation of an asymptotic spatial pattern on the TDGL equation 
(non-linear Schrodinger equation) with purely imaginary coefficients is expressed in terms 
of Jacobi’s elliptic function, while an exact solution of the asymptotic spatial pattern on 
the TDGL equation (fprce-free Duffing equation) with purely real coefficients is aperiodic 
and has a unique propagation velocity. 

Recently there has been extensive discussion on time-dependent Ginzburg-Landau 
(TDGL) equations with complex coefficients, which were derived in various fields of 
physics such as phase transition in non-equilibrium systems [ 11, instabilities in hydro- 
dynamic systems [2], drift dissipative instability in plasma [3], chemical turbulence 
[4] and the distribution of gene frequency [5]. 

As was shown by Aronson and Weinberger [ 6 ] ,  the solution of the TDGL equation 
converges to a wavefront (travelling wave) solution. Thus, TDGL equations reduce to 
ordinary equations. This gives us a generalisation of the Sagdeev potential [7] into a 
dissipative or non-potential system. 

The condition for the existence of a spatial limit cycle solution is found to be given 
in terms of the propagation velocity of the wavefront solutions. We obtain a generalised 
(two-dimensional and dissipative) Mathieu equation which gives the stability criterion 
for a spatial limit cycle. 

The formulation of the law of classical mechanics in terms of the Hamiltonian does 
not materially decrease the difficulty of solving any given problem. We work out 
practically the same differential equation as is provided by Newton’s equation of 
motion. We then go on to invoke the Hamilton-Jacobi equation which provides an 
alternative method for integrating Newton’s equation of motion. Thus in this letter 
we discuss asymptotic spatial patterns on the TDGL equation (non-linear Schrodinger 
equation) with purely imaginary coefficients, invoking the Hamilton-Jacobi equation. 

An asymptotic spatial pattern on the non-linear Schrodinger equation corresponds 
to two-dimensional motion of a charged particle in a constant uniform magnetic field. 
The limiting amplitude oscillation of the above asymptotic pattern is given in terms 
of Jacobi’s elliptic function. 

Finally we discuss an asymptotic spatial pattern on the TDGL equation (force-free 
Duffing equation) with purely real coefficients. We can obtain an exact solution of an 
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autonomous non-linear partial differential equation in the following way. First we 
find a scaling variable [8] from the linear part of the non-linear partial differential 
equation. 

Next we seek a series solution of the given equation, supposing that the scaling 
variable is small. If the series solution converges, we obtain a desired exact solution. 
Even if the scaling variable is not small, the obtained exact solution is valid because 
of the continuity of the solution. The exact solution of the force-free Duffing equation 
is aperiodic and has a unique propagation velocity. 

The TDGL equation with complex coefficients has the following form: 

a a2 
a t  ax 
- 4 = (1 + ia )  7 4+(1 + i c ) 4  - ( 1  +id)14I2+ 

where 4 is a physical quantity and a, c and d are real. Assuming a travelling wave 
solution +( r, x) = +(x - bt) ( b  being a constant), we obtain 

(1 + ai)$+ bc$ + (1 + ci)+ + (1 +id)l4*1+ = 0 (2) 
or 

(R - e ~ ~ ) +  4 2 e d  + e ~ ) +  bd+ R - R~ = o  
( 2 6 d + 6 R ) + a ( R - ~ R 2 ) + b e R + c R - d R 3 = 0  

where d = d4/dz(z  = x -bt), R = 141 and tan 0 = Im 4 /Re  4. 
Equation (3) has the following limit cycle solution: 

R i = l - e 2  

1 
2 ( ~ - d )  eo = - { b  * [ b2+4(a - d)(b  - d)]”2}. 

(3) 

(4) 

From equation (4), we obtain the condition for the existence of a spatial limit cycle 
solution: 

( U  - c)’ 3 b2 3 4 ( ~  - d ) ( d  - c). ( 5 )  

We now consider the stability of equation (4) to a small perturbation, providing that 
a, b, c, d >> 1 (non-linear Schrodinger equation). Let us introduce the small perturbation 
84 in the form 

( 6 )  

(7)  

d(z) = Ro exp(i0,)+ 84. 
Linearising equation (2) with regard to 84 leads to 

8$ -ib8$ + c84 -dR;[284 +exp(ikz)84*] = O  
where the asterisk denotes the complex conjugate and k = 8,. 

Equation (7) is a generalised (complex and dissipative) Mathieu equation which 
gives the stability criterion for a limit cycle solution (4). We seek a solution of equation 
(7) in the form 

84 cc JI(z) exp(ikz). (8) 
As usual, assuming dJI/dzaAJI and [AI<< k, we obtain from equations (7) and (8) 

( -ak2+ kb + c -2d)2 
(2ka - b)2  

A 2 = d 2 -  (9) 
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The stability condition for the limit a cycle solution is that 

A ’ d O .  

We next consider an amplitude oscillation which is described by equation ( 3 ) .  For 
a, b, c, d >> 1 ,  equation ( 3 )  corresponds to the non-linear Schrodinger equation 

a(R - e’R)+ beR + cR - dR3 = 0 (10) 

( 1 1 )  
d 
- (abR - bR2) = 0. 
dz 

Without loss of generality, we can assume that a is positive definite. In equations (10) 
and ( 1  1 )  we can regard b as an external constant uniform magnetic field. 

The equations of motion (10 )  and (1 1 )  are derived from a Lagrangian 

L = ;a( d’+ R2b2) -f bbR2 - (f c -adR2) R’. 

P, = aL/ad = ad 

Po = aL/eb = ( a i  - b)R2.  

( 1 2 )  

( 1 3 )  

(14 )  

The generalised momenta associated with the coordinates R and 0 are defined as 

It is evident from equation ( 1 2 )  that angular momentum Po is conserved. From 
equations (12)-( 14) we find the Hamiltonian 

P 2  1 H =2+- (Po/ R +f bR)’ -f R’( c’-$dR2) 
2a 2a 

where c ’ =  c - b2/8a. 
Introducing the action S( = dz L ) ,  we have the Hamilton-Jacobi equation 

-s+- - +- -- aS+$bR +$R2(c ’ - fdR2)=0 .  
az a 2a (””)’ dR 2 a ( R  ae )’ 

Since the coordinate 8 is a cycle, action S is given in the form 

(17 )  
1 

S = -Eo+ Po8 + ( 2 ~ ) ” ~  (Po/ R +f bR)’+ f R2( c ’ - fdR2)  

where Eo (total energy) and Po (angular momentum) are arbitrary constants. Differen- 
tiating action S with respect to the arbitrary constants Eo and Po gives, respectively, 

z -zo= ( f a ) ’ ”  dR[E’-P~/2~R*+fR~(c’-dR/2)1-’/~ 

8 - e - - 

where E’= Eo- bPo/2a and zo and Bo are initial values. Equation (18) is the general 
solution of the problem. 

The amplitude R oscillates between two limits Rmin and R,,, . For Po = 0, the 
solution of equation ( 1 8 )  is expressed in the form: 

( 1 8 )  
I 
dR( P i /  R’ + f b)[  E’ - Pi/2aR2 + 4 R’( C’ - dR2/2)]-’l2 

O-J2a ‘I 

R = Adn( U,  k 2 )  

d b  - e = -  
dz a 
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where dn is a Jacobi elliptic function, c ‘ a  0, d s 0, 0 2 E 2 4 d c f 2 ,  

- d  
c’+ ( CC” - 4 d E ) l i 2  

A2= U = B ( z  - z O )  

(20) k 2  = 2( C” - 4dE)”’  
B2 = c+ [ (:)’+4( f)] l i 2 .  

~ ’ + ( c ’ ~ - 4 d E ) ’ ’ ’  a 

In the limit k + 1, i.e. E + 0, we get a localised solution 

R = A sech U. 

For a, c, d,  Im 4 << 1, equation (1) reduces to 

a a2 - w=- w+ w- w3 
a t  ax2 

where W =  Re 4. We seek a solution which is a function of the scaling variable 
s = exp[( 1 + p2)  f + p x ]  ( p  being a constant). 

Assuming a series solution for a small scaling variable, we have 

where A is a constant and s = exp(3/2t + x/d2).  Note that the solution (23) is aperiodic 
and has a unique propagation velocity. 
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